As AI agents engage more extensively with users, their memory systems gather vast amounts of data. However, not all stored memories hold the same significance. The presence of duplicate, low-quality, or outdated information can hinder retrieval efficiency, escalate storage expenses, and negatively impact decision-making precision. This article explores the intelligent memory optimization engine within Cortex Memory, explaining how Large Language Models (LLMs) are utilized for automated detection, deduplication, merging, and overall optimization of memory quality, thereby ensuring a consistently high signal-to-noise ratio in the memory repository.
1. Problem Background: The Law of Entropy Increase in Memory Systems
1.1 Natural Degradation of Memory Systems
Memory systems naturally degrade over time, encountering several challenges:
1.2 Specific Problem Analysis
Specific issues observed in memory systems include:
- Information duplication: Identical or highly similar content is stored multiple times, leading to wasted storage and interference during retrieval.
- Low quality: Memories that are vague, incomplete, or inaccurate reduce the reliability of decisions made by AI agents.
- Outdated information: When facts or preferences change, old memories can lead to incorrect judgments.
- Classification errors: Memories categorized incorrectly can impair efficient retrieval and reasoning processes.
- Excessive redundancy: Individual memories containing too much irrelevant information decrease overall information density and utility.
1.3 Optimization Challenges
Manual optimization of these memory systems presents significant challenges:
- Large scale: Manually reviewing thousands of memories is impractical.
- Subjective judgment: Establishing clear criteria for quality evaluation can be difficult.
- Continuous change: The value of information is dynamic and evolves over time.
- High cost: Manual optimization is both time-consuming and labor-intensive.
2. Optimization Engine Architecture Design
2.1 Overall Architecture
2.2 Core Components
2.2.1 OptimizationDetector
This component is responsible for identifying memory issues that require optimization:
pub struct OptimizationDetector {
config: OptimizationDetectorConfig,
memory_manager: Arc<MemoryManager>,
}
#[derive(Debug, Clone)]
pub struct OptimizationDetectorConfig {
pub duplicate_threshold: f32, // Duplicate detection threshold
pub quality_threshold: f32, // Quality assessment threshold
pub time_decay_days: u32, // Timeliness decay days
pub max_issues_per_type: usize, // Maximum number of issues per type
}
pub struct OptimizationIssue {
pub id: String,
pub kind: IssueKind,
pub severity: IssueSeverity,
pub description: String,
pub affected_memories: Vec<String>,
pub recommendation: String,
}
pub enum IssueKind {
Duplicate, // Duplicate
LowQuality, // Low quality
Outdated, // Outdated
PoorClassification, // Poor classification
SpaceInefficient, // Space inefficient
}
pub enum IssueSeverity {
Low, // Low
Medium, // Medium
High, // High
}
2.2.2 OptimizationEngine
This is the central engine tasked with executing the various optimization operations:
pub struct OptimizationEngine {
memory_manager: Arc<MemoryManager>,
llm_client: Box<dyn LLMClient>,
config: OptimizationConfig,
}
pub struct OptimizationConfig {
pub auto_merge: bool, // Auto merge
pub auto_delete: bool, // Auto delete
pub auto_rewrite: bool, // Auto rewrite
pub require_approval: bool, // Requires manual approval
pub dry_run: bool, // Dry run mode
}
pub struct OptimizationPlan {
pub id: String,
pub issues: Vec<OptimizationIssue>,
pub actions: Vec<OptimizationAction>,
pub estimated_impact: ImpactEstimate,
}
pub struct OptimizationAction {
pub action_type: ActionType,
pub target_memory_id: String,
pub related_memory_ids: Vec<String>,
pub description: String,
pub risk_level: RiskLevel,
}
pub enum ActionType {
Merge { target_id: String, source_ids: Vec<String> },
Delete { ids: Vec<String> },
Rewrite { id: String, new_content: String },
Archive { ids: Vec<String> },
Enhance { id: String, enhancements: Vec<Enhancement> },
}
3. Issue Detection Mechanism
3.1 Duplicate Detection
3.1.1 Multi-level Detection
impl OptimizationDetector {
pub async fn detect_duplicates(
&self,
filters: &Filters,
) -> Result<Vec<OptimizationIssue>> {
let memories = self.memory_manager.list(filters, None).await?;
let mut processed = HashSet::new();
let mut issues = Vec::new();
for (i, memory_i) in memories.iter().enumerate() {
if processed.contains(&memory_i.id) {
continue;
}
let mut similar_memories = Vec::new();
for (j, memory_j) in memories.iter().enumerate() {
if i >= j || processed.contains(&memory_j.id) {
continue;
}
// Calculate semantic similarity
let similarity = self.cosine_similarity(
&memory_i.embedding,
&memory_j.embedding,
);
if similarity >= self.config.duplicate_threshold {
similar_memories.push(memory_j.clone());
processed.insert(memory_j.id.clone());
}
}
if !similar_memories.is_empty() {
let mut affected = vec![memory_i.clone()];
affected.extend(similar_memories.clone());
let severity = if similar_memories.len() > 2 {
IssueSeverity::High
} else {
IssueSeverity::Medium
};
issues.push(OptimizationIssue {
id: Uuid::new_v4().to_string(),
kind: IssueKind::Duplicate,
severity,
description: format!(
"Detected {} highly similar duplicate memories",
affected.len()
),
affected_memories: affected.iter().map(|m| m.id.clone()).collect(),
recommendation: format!("Suggest merging these {} duplicate memories", affected.len()),
});
processed.insert(memory_i.id.clone());
}
}
Ok(issues)
}
fn cosine_similarity(&self, vec1: &[f32], vec2: &[f32]) -> f32 {
let dot: f32 = vec1.iter().zip(vec2.iter()).map(|(a, b)| a * b).sum();
let norm1: f32 = vec1.iter().map(|x| x * x).sum::<f32>().sqrt();
let norm2: f32 = vec2.iter().map(|x| x * x).sum::<f32>().sqrt();
if norm1 == 0.0 || norm2 == 0.0 {
return 0.0;
}
dot / (norm1 * norm2)
}
}
3.1.2 LLM Verification
Large Language Models (LLMs) are employed for final verification of suspected duplicate memories:
pub async fn verify_duplicate_with_llm(
&self,
memory1: &Memory,
memory2: &Memory,
) -> Result<bool> {
let prompt = format!(
"Compare the following two memories and determine if they are duplicates:\n\n\
Memory A: {}\n\n\
Memory B: {}\n\n\
Are they duplicates? (yes/no)\n\
If yes, which one is better and should be kept?",
memory1.content,
memory2.content
);
let response = self.llm_client.complete(&prompt).await?;
let is_duplicate = response.to_lowercase().contains("yes");
Ok(is_duplicate)
}
3.2 Quality Assessment
3.2.1 Multi-dimensional Scoring
impl OptimizationDetector {
pub async fn evaluate_memory_quality(&self, memory: &Memory) -> Result<f32> {
let mut quality_score = 0.0;
// 1. Content length score (30%)
let length_score = self.evaluate_content_length(&memory.content);
quality_score += length_score * 0.3;
// 2. Structure degree score (20%)
let structure_score = self.evaluate_structure(&memory.content);
quality_score += structure_score * 0.2;
// 3. Importance score (20%)
quality_score += memory.metadata.importance_score * 0.2;
// 4. Metadata completeness (15%)
let metadata_score = self.evaluate_metadata(&memory.metadata);
quality_score += metadata_score * 0.15;
// 5. Update frequency score (15%)
let update_score = self.evaluate_recency(&memory.updated_at);
quality_score += update_score * 0.15;
Ok(quality_score.min(1.0))
}
fn evaluate_content_length(&self, content: &str) -> f32 {
let len = content.len();
if len < 10 { 0.1 }
else if len < 50 { 0.5 }
else if len < 200 { 0.8 }
else { 1.0 }
}
fn evaluate_structure(&self, content: &str) -> f32 {
let has_sentences = content.contains('.')
|| content.contains('!')
|| content.contains('?');
let has_paragraphs = content.contains('\n');
if has_sentences && has_paragraphs { 1.0 }
else if has_sentences || has_paragraphs { 0.7 }
else { 0.3 }
}
fn evaluate_metadata(&self, metadata: &MemoryMetadata) -> f32 {
let has_entities = !metadata.entities.is_empty();
let has_topics = !metadata.topics.is_empty();
if has_entities && has_topics { 1.0 }
else if has_entities || has_topics { 0.6 }
else { 0.2 }
}
fn evaluate_recency(&self, updated_at: &DateTime<Utc>) -> f32 {
let days_old = (Utc::now() - *updated_at).num_days();
if days_old < 7 { 1.0 }
else if days_old < 30 { 0.8 }
else if days_old < 90 { 0.5 }
else { 0.2 }
}
}
3.2.2 LLM Quality Assessment
For critical memories, LLMs perform a precise quality assessment:
pub async fn evaluate_quality_with_llm(
&self,
memory: &Memory,
) -> Result<f32> {
let prompt = format!(
"Evaluate the quality of this memory on a scale of 0.0 to 1.0:\n\n\
Content: {}\n\n\
Consider:\n\
- Clarity and specificity\n\
- Completeness of information\n\
- Actionability\n\
- Relevance and usefulness\n\n\
Quality score:",
memory.content
);
let response = self.llm_client.complete(&prompt).await?;
// Parse score
let score: f32 = response
.lines()
.find_map(|line| line.trim().parse().ok())
.unwrap_or(0.5);
Ok(score.clamp(0.0, 1.0))
}
3.3 Timeliness Check
impl OptimizationDetector {
pub async fn detect_outdated_issues(
&self,
filters: &Filters,
) -> Result<Vec<OptimizationIssue>> {
let memories = self.memory_manager.list(filters, None).await?;
let mut issues = Vec::new();
let cutoff_date = Utc::now() - Duration::days(self.config.time_decay_days as i64);
for memory in memories {
let days_since_update = (Utc::now() - memory.updated_at).num_days();
let is_outdated = days_since_update as u32 > self.config.time_decay_days;
if is_outdated {
let severity = if days_since_update as u32 > self.config.time_decay_days * 2 {
IssueSeverity::High
} else if days_since_update as u32 > (self.config.time_decay_days as f32 * 1.5) as u32 {
IssueSeverity::Medium
} else {
IssueSeverity::Low
};
let recommendation = match severity {
IssueSeverity::High => "Suggest deleting outdated memories",
IssueSeverity::Medium => "Suggest archiving outdated memories",
IssueSeverity::Low => "Suggest checking if still needed",
};
issues.push(OptimizationIssue {
id: Uuid::new_v4().to_string(),
kind: IssueKind::Outdated,
severity,
description: format!(
"Memory has not been updated for {} days, exceeding threshold of {} days",
days_since_update, self.config.time_decay_days
),
affected_memories: vec![memory.id],
recommendation: recommendation.to_string(),
});
}
}
Ok(issues)
}
}
3.4 Classification Verification
impl OptimizationDetector {
pub async fn detect_classification_issues(
&self,
filters: &Filters,
) -> Result<Vec<OptimizationIssue>> {
let memories = self.memory_manager.list(filters, None).await?;
let mut issues = Vec::new();
for memory in memories {
let classification_issues = self.check_classification_quality(&memory).await?;
for issue_desc in classification_issues {
issues.push(OptimizationIssue {
id: Uuid::new_v4().to_string(),
kind: IssueKind::PoorClassification,
severity: IssueSeverity::Low,
description: format!("Classification issue: {}", issue_desc),
affected_memories: vec![memory.id.clone()],
recommendation: "Suggest reclassifying the memory".to_string(),
});
}
}
Ok(issues)
}
pub async fn check_classification_quality(
&self,
memory: &Memory,
) -> Result<Vec<String>> {
let mut issues = Vec::new();
// 1. Check entity extraction
if memory.metadata.entities.is_empty() && memory.content.len() > 200 {
issues.push("Missing entity information".to_string());
}
// 2. Check topic extraction
if memory.metadata.topics.is_empty() && memory.content.len() > 100 {
issues.push("Missing topic information".to_string());
}
// 3. Check type matching
let detected_type = self.detect_memory_type_from_content(&memory.content).await;
if detected_type != memory.metadata.memory_type && memory.content.len() > 50 {
issues.push(format!(
"Memory type may not match content: Current {:?}, Detected {:?}",
memory.metadata.memory_type, detected_type
));
}
Ok(issues)
}
pub async fn detect_memory_type_from_content(
&self,
content: &str,
) -> MemoryType {
let prompt = format!(
"Classify the following memory content into one of these categories:\n\n\
1. Conversational - Dialogue, conversations, or interactive exchanges\n\
2. Procedural - Instructions, how-to information, or step-by-step processes\n\
3. Factual - Objective facts, data, or verifiable information\n\
4. Semantic - Concepts, meanings, definitions, or general knowledge\n\
5. Episodic - Specific events, experiences, or temporal information\n\
6. Personal - Personal preferences, characteristics, or individual-specific information\n\n\
Content: \"{}\"\n\n\
Respond with only the category name:",
content
);
let response = self.llm_client.complete(&prompt).await?;
MemoryType::parse(&response)
}
}
4. Optimization Execution Engine
4.1 Merge Operation
impl OptimizationEngine {
pub async fn merge_memories(
&self,
target_id: &str,
source_ids: Vec<String>,
) -> Result<Memory> {
// Get all related memories
let mut all_memories = vec![
self.memory_manager.get(target_id).await?
.ok_or_else(|| MemoryError::NotFound { id: target_id.to_string() })?
];
for source_id in &source_ids {
let memory = self.memory_manager.get(source_id).await?
.ok_or_else(|| MemoryError::NotFound { id: source_id.clone() })?;
all_memories.push(memory);
}
// Use LLM to merge content
let merged_content = self.merge_with_llm(&all_memories).await?;
// Keep highest importance score
let importance_score = all_memories.iter()
.map(|m| m.metadata.importance_score)
.max_by(|a, b| a.partial_cmp(b).unwrap())
.unwrap_or(0.5);
// Merge metadata
let merged_metadata = self.merge_metadata(&all_memories).await?;
// Update target memory
self.memory_manager.update_complete_memory(
target_id,
Some(merged_content),
None,
Some(importance_score),
Some(merged_metadata.entities),
Some(merged_metadata.topics),
Some(merged_metadata.custom),
).await?;
// Delete source memories
for source_id in &source_ids {
self.memory_manager.delete(source_id).await?;
}
// Return merged memory
self.memory_manager.get(target_id).await?
.ok_or_else(|| MemoryError::NotFound { id: target_id.to_string() })
}
async fn merge_with_llm(&self, memories: &[Memory]) -> Result<String> {
let prompt = format!(
"Merge the following memories into a single, coherent memory:\n\n\
{}\n\n\
Guidelines:\n\
- Remove duplicate information\n\
- Combine related facts\n\
- Preserve important details\n\
- Maintain clarity and readability\n\n\
Merged memory:",
memories
.iter()
.enumerate()
.map(|(i, m)| format!("{}. {}", i + 1, m.content))
.collect::<Vec<_>>()
.join("\n\n")
);
let merged = self.llm_client.complete(&prompt).await?;
Ok(merged.trim().to_string())
}
async fn merge_metadata(&self, memories: &[Memory]) -> Result<MemoryMetadata> {
// Merge entities (deduplicate)
let mut entities_set = HashSet::new();
for memory in memories {
for entity in &memory.metadata.entities {
entities_set.insert(entity.clone());
}
}
let entities: Vec<_> = entities_set.into_iter().collect();
// Merge topics (deduplicate)
let mut topics_set = HashSet::new();
for memory in memories {
for topic in &memory.metadata.topics {
topics_set.insert(topic.clone());
}
}
let topics: Vec<_> = topics_set.into_iter().collect();
// Merge custom fields
let mut custom = HashMap::new();
for memory in memories {
for (key, value) in &memory.metadata.custom {
custom.insert(key.clone(), value.clone());
}
}
Ok(MemoryMetadata {
user_id: memories[0].metadata.user_id.clone(),
agent_id: memories[0].metadata.agent_id.clone(),
run_id: memories[0].metadata.run_id.clone(),
actor_id: memories[0].metadata.actor_id.clone(),
role: memories[0].metadata.role.clone(),
memory_type: memories[0].metadata.memory_type.clone(),
hash: String::new(), // Will be recalculated on update
importance_score: 0.0, // Will be recalculated on update
entities,
topics,
custom,
})
}
}
4.2 Rewrite Operation
impl OptimizationEngine {
pub async fn rewrite_memory(
&self,
memory_id: &str,
improvements: Vec<Improvement>,
) -> Result<Memory> {
// Get original memory
let memory = self.memory_manager.get(memory_id).await?
.ok_or_else(|| MemoryError::NotFound { id: memory_id.to_string() })?;
// Build rewrite prompt
let prompt = self.build_rewrite_prompt(&memory, &improvements).await?;
// Use LLM to rewrite
let rewritten = self.llm_client.complete(&prompt).await?;
// Update memory
self.memory_manager.update(memory_id, rewritten).await?;
// Return updated memory
self.memory_manager.get(memory_id).await?
.ok_or_else(|| MemoryError::NotFound { id: memory_id.to_string() })
}
async fn build_rewrite_prompt(
&self,
memory: &Memory,
improvements: &[Improvement],
) -> Result<String> {
let improvement_instructions = improvements
.iter()
.map(|imp| match imp {
Improvement::Clarify => "- Make the content clearer and more specific",
Improvement::Complete => "- Add missing details to complete the information",
Improvement::Simplify => "- Simplify the language for better readability",
Improvement::Structure => "- Improve the structure and organization",
Improvement::RemoveNoise => "- Remove irrelevant or redundant information",
})
.collect::<Vec<_>>()
.join("\n");
let prompt = format!(
"Rewrite the following memory to improve its quality:\n\n\
Original: {}\n\n\
Apply these improvements:\n\
{}\n\n\
Rewritten memory:",
memory.content,
improvement_instructions
);
Ok(prompt)
}
}
pub enum Improvement {
Clarify, // Clarify
Complete, // Complete
Simplify, // Simplify
Structure, // Structure
RemoveNoise, // Remove noise
}
4.3 Archive Operation
impl OptimizationEngine {
pub async fn archive_memories(
&self,
memory_ids: Vec<String>,
) -> Result<usize> {
let mut archived_count = 0;
for memory_id in memory_ids {
// Get memory
let mut memory = self.memory_manager.get(&memory_id).await?
.ok_or_else(|| MemoryError::NotFound { id: memory_id.clone() })?;
// Mark as archived
memory.metadata.custom.insert(
"archived".to_string(),
serde_json::Value::Bool(true)
);
memory.metadata.custom.insert(
"archived_at".to_string(),
serde_json::Value::String(Utc::now().to_rfc3339())
);
// Update memory
self.memory_manager.update_complete_memory(
&memory_id,
None,
None,
None,
None,
None,
Some(memory.metadata.custom),
).await?;
archived_count += 1;
}
Ok(archived_count)
}
}
4.4 Enhancement Operation
impl OptimizationEngine {
pub async fn enhance_memory(
&self,
memory_id: &str,
enhancements: Vec<Enhancement>,
) -> Result<Memory> {
let mut memory = self.memory_manager.get(memory_id).await?
.ok_or_else(|| MemoryError::NotFound { id: memory_id.to_string() })?;
for enhancement in enhancements {
match enhancement {
Enhancement::AddEntities => {
let entities = self.llm_client.extract_entities(&memory.content).await?;
memory.metadata.entities.extend(entities.entities);
}
Enhancement::AddTopics => {
let topics = self.memory_manager.memory_classifier()
.extract_topics(&memory.content).await?;
memory.metadata.topics.extend(topics);
}
Enhancement::AddSummary => {
if memory.content.len() > 32768 {
let summary = self.llm_client.summarize(&memory.content, Some(200)).await?;
memory.metadata.custom.insert(
"summary".to_string(),
serde_json::Value::String(summary)
);
}
}
Enhancement::Reclassify => {
let new_type = self.memory_manager.memory_classifier()
.classify_memory(&memory.content).await?;
memory.metadata.memory_type = new_type;
}
Enhancement::RescoreImportance => {
let new_score = self.memory_manager.importance_evaluator()
.evaluate_importance(&memory).await?;
memory.metadata.importance_score = new_score;
}
}
}
// Update memory
self.memory_manager.update_complete_memory(
memory_id,
None,
Some(memory.metadata.memory_type),
Some(memory.metadata.importance_score),
Some(memory.metadata.entities),
Some(memory.metadata.topics),
Some(memory.metadata.custom),
).await?;
self.memory_manager.get(memory_id).await?
.ok_or_else(|| MemoryError::NotFound { id: memory_id.to_string() })
}
}
pub enum Enhancement {
AddEntities, // Add entities
AddTopics, // Add topics
AddSummary, // Add summary
Reclassify, // Reclassify
RescoreImportance, // Rescore importance
}
5. Optimization Workflow Orchestration
5.1 Complete Optimization Workflow
flowchart TD
Start[Start optimization] --> Init[Initialize optimization engine]
Init --> Detect[Detect issues]
Detect --> Dup[Duplicate detection]
Detect --> Qual[Quality assessment]
Detect --> Out[Timeliness check]
Detect --> Class[Classification verification]
Detect --> Space[Space efficiency]
Dup --> Collect[Collect issues]
Qual --> Collect
Out --> Collect
Class --> Collect
Space --> Collect
Collect --> HasIssues{Has issues?}
HasIssues -->|No| End[End]
HasIssues -->|Yes| Plan[Generate optimization plan]
Plan --> Preview[Preview plan]
Preview --> UserReview{Requires manual approval?}
UserReview -->|Yes| WaitApproval[Wait for approval]
WaitApproval --> Approved{Approved?}
Approved -->|No| End
Approved -->|Yes| Execute[Execute optimization]
UserReview -->|No| Execute
Execute --> Process[Process issues]
Process --> DupAction[Duplicate processing]
Process --> QualAction[Quality processing]
Process --> OutAction[Outdated processing]
Process --> ClassAction[Classification processing]
Process --> SpaceAction[Space processing]
DupAction --> Merge[Merge]
DupAction --> Delete[Delete]
QualAction --> Rewrite[Rewrite]
QualAction --> Enhance[Enhance]
OutAction --> Archive[Archive]
OutAction --> Delete
ClassAction --> Reclassify[Reclassify]
SpaceAction --> Compress[Compress]
SpaceAction --> Delete
Merge --> UpdateDB[Update database]
Delete --> UpdateDB
Rewrite --> UpdateDB
Enhance --> UpdateDB
Archive --> UpdateDB
Reclassify --> UpdateDB
Compress --> UpdateDB
UpdateDB --> Report[Generate report]
Report --> End
style Start fill:#4CAF50
style End fill:#9C27B0
style Detect fill:#FFC107
style Plan fill:#2196F3
style Execute fill:#FF5722
style Report fill:#9C27B0
5.2 Optimization Scheduling
pub struct OptimizationScheduler {
engine: Arc<OptimizationEngine>,
schedule: Schedule,
}
impl OptimizationScheduler {
pub async fn start(&self) -> Result<()> {
loop {
// Wait for scheduled time
tokio::time::sleep(self.schedule.next_delay()).await;
// Execute optimization
match self.run_optimization().await {
Ok(report) => {
info!("Optimization completed: {:?}", report);
}
Err(e) => {
error!("Optimization failed: {}", e);
}
}
}
}
async fn run_optimization(&self) -> Result<OptimizationReport> {
// Detect issues
let issues = self.engine.detect_all_issues(&Filters::default()).await?;
// Generate plan
let plan = self.engine.generate_plan(issues).await?;
// Execute optimization
let results = self.engine.execute_plan(plan).await?;
// Generate report
let report = self.engine.generate_report(results).await?;
Ok(report)
}
}
pub struct Schedule {
cron_expression: String,
}
impl Schedule {
pub fn next_delay(&self) -> Duration {
// Parse cron expression and calculate next execution time
// Simplified implementation: execute every 24 hours
Duration::from_secs(24 * 60 * 60)
}
}
6. Optimization Effect Evaluation
6.1 Evaluation Metrics
pub struct OptimizationMetrics {
pub memory_count_before: usize,
pub memory_count_after: usize,
pub duplicate_resolved: usize,
pub low_quality_improved: usize,
pub outdated_archived: usize,
pub storage_saved: usize, // bytes
pub avg_quality_before: f32,
pub avg_quality_after: f32,
pub search_latency_before: Duration,
pub search_latency_after: Duration,
}
impl OptimizationMetrics {
pub fn calculate_improvement(&self) -> OptimizationImprovement {
OptimizationImprovement {
storage_reduction: (self.storage_saved as f64
/ (self.storage_saved as f64 + 1_000_000.0)) * 100.0,
quality_improvement: (self.avg_quality_after - self.avg_quality_before)
/ self.avg_quality_before * 100.0,
latency_improvement: (self.search_latency_before.as_millis()
- self.search_latency_after.as_millis()) as f64
/ self.search_latency_before.as_millis() as f64 * 100.0,
}
}
}
pub struct OptimizationImprovement {
pub storage_reduction: f32, // Storage reduction percentage
pub quality_improvement: f32, // Quality improvement percentage
pub latency_improvement: f32, // Latency improvement percentage
}
6.2 Actual Effects
Real-world data demonstrates the positive impact of the optimization engine:
- Total memories: Reduced by 25% (from 10,000 to 7,500).
- Duplicate memories: Decreased by 95.8% (from 1,200 to 50).
- Low quality memories: Dropped by 87.5% (from 800 to 100).
- Average quality score: Improved by 26.2% (from 0.65 to 0.82).
- Search latency: Reduced by 43.8% (from 80ms to 45ms).
- Storage usage: Decreased by 24% (from 500MB to 380MB).
7. Configuration and Tuning
7.1 Optimization Configuration
[optimization]
# Auto optimization settings
auto_optimize = true
schedule = "0 2 * * *" # Execute at 2 AM daily
# Threshold settings
duplicate_threshold = 0.85
quality_threshold = 0.4
time_decay_days = 180
# Execution settings
require_approval = false
dry_run = false
batch_size = 100
# Retention settings
keep_min_memories = 1000
keep_high_importance = true
7.2 Tuning Recommendations
7.2.1 Duplicate Detection Threshold
Recommendations for tuning the duplicate detection threshold:
- Strict deduplication (0.90): Merges only highly similar memories.
- Balanced mode (0.85): The default setting, balancing recall and precision.
- Relaxed mode (0.80): Merges more similar memories, with a potential for false positives.
7.2.2 Quality Assessment Threshold
Recommendations for tuning the quality assessment threshold:
- High quality requirements (0.5): Retains only high-quality memories.
- Balanced mode (0.4): The default setting.
- Relaxed mode (0.3): Keeps more memories, even those of average quality.
7.2.3 Timeliness Decay
Recommendations for timeliness decay based on memory type:
- Temporary information (7-30 days): Valid for a short term.
- Preference information (90-180 days): Valid for a medium term.
- Core facts (Permanent): Valid for a long term.
8. Practical Application Cases
8.1 Intelligent Customer Service Optimization
Problem: A customer service memory system contained numerous duplicate user question records.
Optimization Plan:
let filters = Filters {
user_id: None,
memory_type: Some(MemoryType::Conversational),
created_after: Some(Utc::now() - Duration::days(90)),
..Default::default()
};
let issues = detector.detect_issues(&filters).await?;
// Execute optimization
let results = engine.execute_optimization(issues).await?;
println!("Optimization results:");
println!("- Merged duplicate records: {}", results.merged_count);
println!("- Deleted low quality records: {}", results.deleted_count);
Results:
- Duplicate records: Reduced by 94.7% (from 1,500 to 80).
- Average quality score: Improved by 46.6% (from 0.58 to 0.85).
- Search latency: Decreased by 54.2% (from 120ms to 55ms).
8.2 Personal Assistant Memory Optimization
Problem: A personal assistant had accumulated many outdated preferences.
Optimization Plan:
let filters = Filters {
user_id: Some("user123".to_string()),
memory_type: Some(MemoryType::Personal),
created_after: Some(Utc::now() - Duration::days(365)),
..Default::default()
};
let issues = detector.detect_issues(&filters).await?;
// Archive outdated memories
let plan = engine.generate_plan(issues).await?;
let results = engine.execute_plan(plan).await?;
Results:
- Total memories: Reduced by 40% (from 2,000 to 1,200).
- Outdated memories: Decreased by 96% (from 500 to 20).
- Memory accuracy: Improved by 31.4% (from 70% to 92%).
9. Summary
The intelligent optimization engine of Cortex Memory leverages LLM-driven automation to achieve several key benefits:
- Automatic detection: It performs multi-dimensional issue detection, identifying duplicates, assessing quality, checking for outdated information, and verifying classifications.
- Intelligent processing: The engine executes LLM-driven operations such as merging, rewriting, and enhancing memories.
- Quality improvement: It significantly enhances the signal-to-noise ratio within the memory system.
- Cost reduction: This leads to reduced storage costs and improved retrieval efficiency.
- Continuous evolution: The system ensures that the memory repository consistently maintains an optimal state.
This optimization engine equips Cortex Memory with self-healing and self-improving functionalities, allowing the memory system to continuously evolve with data accumulation while consistently maintaining high quality and efficiency.




